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Resistive wall impedance as derivative of the electric capacitance
for a beam pipe of arbitrary cross section
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We derive a general formula expressing the resistive wall impedance in the ultrarelativistic limit
for a beam pipe of arbitrary cross section through the “normal derivative” of its electric capaci-
tance. An application to the case of rectangular cross section yields a closed form expression of the
corresponding longitudinal impedance in terms of elliptic integrals.

PACS number(s): 41.75.—i

I. INTRODUCTION AND SUMMARY

The electromagnetic field associated with an ultrarela-
tivistic bunch of charged particles traveling in a perfectly
conducting pipe of arbitrary, but constant, cross section
can be determined by solving a two-dimensional electro-
static problem. Specifically, the electric field E = -V ¢
is derivable from a scalar potential ¢ satisfying Pois-
son’s equation in the transverse plane, with equipotential
boundary conditions at the metallic beam pipe. Indeed,
thanks to the translation invariance of the pipe cross sec-
tion, the electromagnetic field is obtained by a Lorentz
transformation of the purely electrostatic field in the rest
frame of the bunch. In the extreme relativistic limit, the
bunch becomes infinitely long in its rest frame and the
electrostatic potential at a given point is determined only
by the “slice” of beam charge in the corresponding trans-
verse plane.

For a pipe of finite resistivity, the electromagnetic field
is no longer purely transverse and the Fourier transform
of the longitudinal electric field on the beam axis, respon-
sible for the parasitic loss, is associated with the longitu-
dinal resistive wall impedance Z. In the case of a thick
pipe with uniform resistivity p, one can treat the effect of
resistivity as a small perturbation and assume that the
transverse fields can be approximated by those obtained
for a perfectly conducting pipe. Each Fourier component
of the longitudinal wall current I., equal to the tangen-
tial magnetic field H; and flowing in the direction oppo-
site to the beam current Iy, is therefore proportional to
V. ¢ at the metallic boundary. On the other hand, using
Ohm’s law, the longitudinal electric field can be approx-
imately written as E, = Z,1I,, where the wall surface
impedance Z,, = (1 — i)p/d depends on the skin depth
8. The power Zp|Iy|? lost by the beam is equal to the
outgoing flux of the complex Poynting vector E X H*
across the pipe wall and the longitudinal impedance per
unit length Z7, /L can therefore be expressed as a contour
integral of E,I? = Z,,|1,|? over the pipe perimeter [1]
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Here g is the permittivity of free space and A\g = Ip/c
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the linear charge density of the beam. For a pencil beam
located at »; = 73 in the transverse plane, the electro-
static potential ¢ satisfies the two-dimensional Poisson
equation

Vi(p = —& 0(ry — 7).
€o

Therefore the ratio ® = ¢/Ag is real and depends only

on the pipe geometry and on the beam position. A

similar expression holds also for the transverse (dipole)

impedance Zr, provided the electrostatic problem is

solved using a dipole source term [1].

In Sec. II we show that the contour integral of (V ®)2,
required to compute the resistive wall impedance, is pro-
portional to the “normal derivative” of the electrostatic
energy stored in the region between the beam and the
surrounding pipe (see Fig. 1). This electrostatic en-
ergy can be expressed through the specific capacitance
C = C/L of the system beam pipe and, denoting by én
the infinitesimal outward displacement along the normal
to the pipe surface, we arrive at the following expression
for the longitudinal resistive wall impedance:

“on k()

Note that the specific capacitance C has the same dimen-
sions as the permittivity of free space (i.e., F/m), so that
the ratio £9/C is dimensionless and its normal derivative
times the wall surface impedance yields an impedance per
unit length. [The dimensionless ratio €¢/C is also equal to

FIG. 1. (a) Two closed equipotential curves So and S, the
former enclosing the beam charge Q and the latter repre-
senting the pipe cross section with unit normal vector mn.
(b) Normal variation of the beam pipe geometry: the vec-
tor dn = n dn has constant norm dn.
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the ratio £/po between the specific inductance £ (of the
transmission line consisting of the beam and of its sur-
rounding pipe) and the permeability po of free space [2].
However, it is more natural to express the electrostatic
energy in terms of capacitance.]

In practice, to find the resistive wall impedance one
has first to solve the two-dimensional electrostatic prob-
lem for a uniform beam with unit linear charge density
and to compute the corresponding electric potential dif-
ference A® = 1/C from the beam (assumed to be of in-
finitesimal but constant radius) to the pipe (assumed to
be equipotential). The calculation is then repeated for a
pipe of slightly larger dimensions, each surface element
being displaced by a constant amount n along the nor-
mal to the surface: this yields the normal derivative of
the potential difference, proportional to that of the pipe
electric capacitance. With the help of this prescription,
one avoids the contour integral of (V. ®)? and performs
instead a simple derivative. Moreover, the numerical es-
timate of the capacitance (and of its normal derivative)
for complicated beam pipe cross sections can be improved
using variational techniques.

In Sec. III, we first apply our result to the known case
of a beam in a circular pipe and then to the more com-
plicated case of a centered beam in a rectangular pipe,
for which only a series expansion of the impedance is
available [1]. Using Eq. (2), we arrive at a closed form
expression of the longitudinal impedance in terms of el-
liptic integrals.

II. NORMAL VARIATION
OF THE ELECTROSTATIC ENERGY

We consider the electrostatic potential ® correspond-
ing to a uniform beam with unit linear charge density
traveling in a perfectly conducting pipe of arbitrary cross
section. The charge density induced on the inner surface
of the beam pipe is

and the electrostatic force on a surface element of length
L and tangential extent df is

dF = %EdQ,

where the factor 1/2 is due to the fact that the electric
field vanishes inside the conductor. Since £ = -V, ®
= —n VP, where n denotes the unit vector normal to
the surface and oriented in the outward direction (see
Fig. 1), we obtain

dF 1

dQ _ el
e~ 2

T T 2
The work required to modify the cross section of the

beam pipe by an infinitesimal amount én in the outward
direction is

(V_L@)z n.
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(This work does not include the contribution of the force
on the opposite charge induced on the outer surface of
the beam pipe: such a contribution vanishes for an in-
finitely thick or for a grounded pipe.) From the principle
of energy conservation, the corresponding variation of the
electrostatic energy U for a uniform normal variation én
is thus proportional to the contour integral of the square
of the electric field over the pipe perimeter

U &€ ()L 2

-z fdl(VgI)) :

For a beam of unit linear charge density Q/L = 1,
the specific electrostatic energy U = U/L stored in the
region between the beam and the metallic pipe can be
expressed in terms of the electric capacitance per unit
length C = C/L as
Q? 1
c U= 3¢

}fdz (Vo ®)?% = % 3‘% (;{,) (3)

and, recalling that ® = ¢ /)¢ is real, from Eq. (1) we ob-
tain expression (2) for the resistive wall impedance. Since
the electrostatic energy is also givex by U = QA®/2, the
inverse specific capacitance 1/C equals the electric poten-
tial difference A® between the beam and the surrounding
pipe.

In this context, the effect of resistivity can be inter-
preted as a longitudinal friction force, proportional to
the normal electrostatic force F on the pipe surface: the
friction coefficient depends on the frequency w through
the skin depth § = /2p/(wuo), appearing in the wall

surface impedance Z,,.

U=UL =

N =

Therefore

III. EXAMPLES

As a simple application of our result Eq. (2), we first
compute the longitudinal impedance of a circular pipe
with a centered beam and then consider a transverse
beam offset. Finally we discuss the more complicated
case of a centered beam in a rectangular pipe.

A. Circular pipe

The electrostatic potential ® of a uniform pencil beam
with unit linear charge density, traveling at the center of
a circular pipe of radius b, is

®(r) ! In(r) f <r<b
ry=——— In(r ore<r
2meg - =7
where 7 is the radial distance from the pipe axis and €

denotes the (infinitesimal) beam radius. The potential
difference A® from the beam to the pipe is therefore
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and, since the normal derivative for a circular pipe cor-

responds to an ordinary derivative with respect to the

radius b, from Eq. (2) we immediately obtain the well

known result

ZL o €o Zw
L —Zwab(c)“%b‘ )
We now consider the case of a beam offset a < b in the
horizontal direction z and write the potential ®(z,y) in
rectangular coordinates, using an opposite image charge
at = b%/a to satisfy the equipotential boundary condi-
tion at z? + y? = b%:

o(z,y) = — (z —a)? + y? }

1
1
4meq n [(w —b2%/a)? + y?

The potential difference A® from the beam, of infinites-
imal radius €, to the pipe is

AD = é- — &(a+e,0) — B(b,0)
1 a\?
- dmeg {ln [(3) ]
2
| (—
|:(a+e—b2/a) } }
and we obtain

8 (eoy 1 (1 2b/a
Efb(?)“ 27 {b+a+6—b2/a}'

In the limit ¢ — 0, Eq. (2) yields

VA . L b2+a2
T " omb b —a? ®)

in agreement with the known result (see Ref. [3], Ex-
ercise 2.31 on p. 118). Taking the limit a,b — oo,
with constant distance b — a = d from the beam to the
pipe, the longitudinal impedance per unit length becomes
Zr/L = Zy/(2nd): therefore the parasitic loss is the
same for a beam traveling in the center of a circular pipe
of radius b or parallel to an infinite metallic plane of equal
resistivity at a distance d = b.

B. Rectangular pipe

We now consider the case of a rectangular pipe with
sides a and b and write the electrostatic potential ®(z),
using the complex notation z = z + ¢y, for a uniform
pencil beam of unit charge density, traveling at the center
20 = (a + ib)/2 of the rectangle, as [4]

re [ 1o [0 (K2/a k) = sn®(Kz5/a, k)] |
{m] I}

®(z) = sn?(Kz/a, k) —sn?(Kzp/a,k)

27meg

(6)
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Here K = K(k) is the complete elliptic integral of the
first kind with modulus k, while sn(u, k) denotes the Ja-
cobian elliptic sine amplitude, again with the same mod-
ulus k: the latter depends on the ratio a/b between the
sides of the rectangle and is implicitly defined by

K/K' =a/b, (7)

where K’ = K(+/1 — k2). The potential (6) is obtained
by the conformal transformation w = sn?(Kz/a,k),
which maps the inside of the rectangle in the z plane into
the upper half of the w plane. The electrostatic problem
is then solved by adding an opposite image charge in the
lower w plane, such that the real w axis be at zero po-
tential. Therefore ®(z) vanishes on the pipe boundary
and the potential difference A® between the beam, of
infinitesimal radius €, and the rectangular pipe is given
by the limit of ®(zo + €) for € — 0. As shown in the
Appendix, neglecting the divergent self-potential propor-
tional to In(e), this limit is

1 1 ab
The infinitesimal variation of £¢/C can then be written
g0y _ 1 da &b 6(KK')
5(?>_Z;<a+b KK )’

and for a normal variation én of the rectangular pipe
cross section we must require

da = 8b = 24n.
Therefore
§ [eo 1 /2 2 1 §KK')
O (Y (242 o)) 9
5n(C) 4ar (a+b KK' én )
In the following, we need the following identities [£]:

EK'+ E'K — KK' = E, Legendre identity (10)

2
dK 1 E dK’
Ek‘—z(l—_ﬁ‘f‘) TS
k E’
~Tiw (ﬁ"")* an

where E = E(k) is the complete elliptic integral of the
second kind and E' = E(V1 — k?).

Using Eq. (7), we can now establish a relation between
Sn and the variation 6k of the elliptic modulus. Indeed

a bba—adb b—a K
G =" - 25"”5(F)‘

Since, from Egs. (10) and (11),

s( K L
K ) T 3K k(1 - k2)’

it follows that
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T b? ok

M= IKZ b ak(l— )

and, using Eq. (7), Eq. (9) can be written
s (ay _Lf1,1
sn\C/) 2m|a b

21 1 2 6(KK')
2(2-pn- ]

In the case of a square pipe of side 2d, i.e., for
a = b = 2d, the term proportional to 1/a — 1/b van-
ishes and substituting this formula into Eq. (2) yields
Z1,]L = Z,/(2rd). We thus find that, for a centered
beam and for a given wall resistivity, a square pipe has
the same longitudinal impedance of the inscribed circular
pipe. In the general case, using again Egs. (10) and (11),
the derivative of K K’ with respect to the modulus k can
be expressed in closed form as

§(KK') EK'—E'K + (2k* - 1)KK'
ok k(1 — k2)

and the longitudinal impedance per unit length becomes

Zr, Zy, |1 1 2(1 1 P

e - S~~~ |[EK'-E

L 27 a+b 7r<a b>[ K
+(2k* — 1)KK’]} . (12)

This formula is symmetric in a and b, since for an ex-
change of the sides of the rectangle k? is trasformed into
1 — k2, K into K', and E into E’. The corresponding
resistive loss, normalized to that of the inscribed circular
pipe, is plotted in Fig. 2: the loss is the same when the
sides of the rectangle are equal (square pipe) or when
one of them becomes infinite (two parallel plates). In-
deed, for @ = oo, k = 1 and K is divergent, while K’,
E, and E’ stay finite [5]; therefore, the Legendre iden-
tity Eq. (10) implies that 'K = KK’ and EK' = w/2,
so that the term in square brackets equals 2/b, i.e., the
inverse of the radius of the inscribed pipe. When the ra-
tio between the sides of the rectangle is around 1.33, the
resistive loss reaches a minimum value about 6% lower
than that corresponding to a square pipe.

0.98

0.97

0.96

0.94

1 2 3 4 5 afb

FIG. 2. Parasitic loss for a centered beam in a rectangular
pipe, normalized to that for the inscribed circular pipe, as a
function of the ratio a/b between the sides of the rectangle.
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IV. DISCUSSION

The result presented in this paper can be considered
as a special example of the variational formulation dis-
cussed in Ref. [6], where the tune shift due to a gradient
perturbation in a circular accelerator was obtained by a
first-order variation of a suitable action integral with re-
spect to the gradient perturbation. The variation with
respect to the betatron function vanishes by virtue of the
corresponding Euler equation and the stationary value of
the action integral coincides with the tune of the accelera-
tor. In the present paper, we consider the volume integral
of the square of the electrostatic field over the charge-free
region between the beam and its surrounding pipe. The
stationary value of this action integral, for an equipo-
tential boundary, corresponds to the stored electrostatic
energy. For a normal variation of the boundary, the cor-
responding variation of the electrostatic energy is pro-
portional to the resistive wall impedance, while the vari-
ation due to the change of the electric potential vanishes
by virtue of the Laplace equation. It should be noted,
however, that in general the variation of the potential
is not zero on the original boundary (as one usually as-
sumes when deriving the corresponding Euler equation).
Nevertheless, the potential perturbation is harmonic and
preserves the flux of the electric field across the bound-
ary; this is enough to prove that the associated first-order
variation of the action integral vanishes. It is remarkable
that such complicated derivation is not necessary if one
makes use of the principle of energy conservation.

We would like to stress that our starting equation (1) is
only valid for relatively high frequencies, typically above
a few megahertz, corresponding to skin depths much
smaller than both the pipe thickness and its local radius
of curvature. On the other hand, the perturbative treat-
ment of the wall resistivity requires that the frequency
be not too high: for example, w/2m < 10'2 Hz for a
cylindrical aluminum pipe, with 5 cm radius, at room
temperature (see Ref. [3], p. 73). [The elegant derivation
of Eq. (1) presented in Ref. [1] and based on the Lorentz
reciprocity theorem may give the impression of an ex-
act result, with the only approximation introduced by
the so-called Leéntovich boundary condition, relating the
longitudinal electric field to the tangential magnetic field
via the wall surface impedance Z,,. However, the gra-
dients appearing in the Poynting theorem and required
to convert the longitudinal impedance into a surface in-
tegral can be considered as transverse gradients only for
a perfectly conducting pipe, while this is only approxi-
mately true for a pipe with wall losses. Such additional
approximation is implicitly used in Ref. [1]. The range
of validity of these approximations and thus of our result
Eq. (2) is usually wide enough to yield accurate estimates
of the parasitic loss in particle accelerators. These con-
siderations can be extended to the case of anomalous skin
effect (when the surface impedance Z,, has a different de-
pendence on frequency [7]) and, to some extent, also to
the case of nonuniform resistivity along the pipe perime-
ter. In the latter case, however, even for an infinitely
thick pipe the perturbative treatment of the wall resis-
tivity breaks down at low frequency, when the induced
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currents tend to redistribute themselves among regions
with different resistivity following the path of least dissi-
pation.

APPENDIX

In this appendix we shall prove that, neglecting a di-
vergent term proportional to In(e), the limit for ¢ — 0
of the potential ®(zo + €), defined by Eq. (6), is given
by Eq. (8). Indeed, replacing z = 2o = (a + b)/2 in the
numerator of expression (6) and expanding the denomi-
nator to first order in €, we can write

sn?(u, k) — sn?(u*, k)

‘b = R k]
(20 +¢) 2meg Osn?(u, k) K
— =17 ¢
ou a
where
K K +iK'
U=—2g= ———
a 2

as a consequence of Eq. (7). Therefore
B0+ = 5o [ln[ 5 | ~1n(9)
= — | —In(e
fore 2meq "N &

(o)

and, since the last term in square brackets can be shown
to be zero, neglecting the term proportional to In(e)

sn?(u, k) — sn?(u*, k)
Osn?(u, k)

u

FRANCESCO RUGGIERO 53

(which does not contribute to the normal derivative of
AQ) yields

1 a 1 ab
A® = 1 ( —) = In(—),

2meg n K 4meg n (KK’)
where we have used again Eq. (7) to obtain an expression
symmetric in @ and b. This result coincides with Eq. (8).

To prove that the last term in square brackets is zero,
we start from the identities [5]

ﬁ%ﬁﬁ = cn(u, k) dn(u, k)
= /1 —sn?(u, k) /1 — k% sn?(u, k)
n(u, k) = VI+k+iV1 —k

V2k

Here cn(u, k) and dn(u, k) denote the Jacobian elliptic
cosine amplitude and delta amplitude, respectively, and
the first of these identities is generally true, while the
second holds as a consequence of our choice of a centered
beam, corresponding to the special value of u = (K +
tK')/2. Then

sn?(u, k) — sn?(u*, k) = %\/1 y*
9sn?(u, k) 2i

o V1R (k+i\/1—k2),

and since the elliptic modulus k ranges from 0 and 1, the
ratio of these two complex quantities has a norm equal
to unity: therefore its logarithm is zero.
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